Author: Frank Denneman (page 3 of 68)

Why the Recent Reported Intel HT Bug is Not in Your Data Center

Yesterday I tweeted out the warning message about the HT bug of Skylake and Kaby Lake processors posted on

My tweet got a LOT of retweets. A lot replied with concerns about their systems. I believe most Data Centers will not suffer from this bug as it is present on Skylake and Kaby Lake processors.

What is the Bug?
According to the warning: Unfixed Skylake and Kaby Lake processors could, in some
situations, dangerously misbehave when hyper-threading is enabled.
Disable hyper-threading immediately in BIOS/UEFI to work around the problem. Read this advisory for instructions about an Intel-provided fix.

Unlikely Present in Your Data Center
The reason why I believe most systems in data centers are not hit by this bug is that it solely applies to E3 Xeons from the Skylake microarchitecture. E3 CPUs are designed to operate in a single socket system, they have no QuickPath Interconnect. Therefore unable to create a symmetric multiprocessing system.

The current E5 (dual-socket) system is based on the Broadwell microarchitecture. The Skylake microarchitecture is expected to appear within the next couple of months. According to the report, they will have the fix included when the product launched. If you are running a NUC in your lab, you might want to check to see whether your system might hit that bug

The link will forward you to a perl script that can help detect if your
system is affected or not. Many thanks to Uwe Kleine-König for
suggesting, and writing this script.

Keynoting Deutsche VMUG and London VMUG

Later on this month, I will be attending the Deutsche VMUG and the London VMUG. As part of the events, I have the opportunity to deliver the keynote on the upcoming service VMware Cloud on AWS.

Many of you will already be aware that Niels and I are releasing the VMware vSphere 6.5 Host Resource Deep Dive. Together we will provide a session at both events zooming into ESXi hosts designs, highlighting some interesting behavior from a component and VMkernel perspective.

14 June 2017
KAP Europa, Kongresshaus der Messe Frankfurt
Osloerstrasse 5
Frankfurt am Main, 60327 DE

22 June 2017
10:00 AM – 5:15 PM (UTC)
10 St Bride Street
London, EC4A 4AD

If you can’t make it to the LONDON VMUG, join us at vBeers that night. We will be heading over to the Fourpure brewing company at 22 Bermondsey Trading Estate, Rotherhithe New Road, London

Hope to see you at one of these events!

Memory-Like Storage Means File Systems Must Change – My Take

I’m an avid reader of They always provide great insights into new technology. This week they published the article “Memory-Like Storage Means File Systems Must Change” and as usually full of good stuff. The focus of this article is about the upcoming non-volatile memory technologies that leverage the memory channel to provide incredible amounts of bandwidth to the storage medium. I can’t wait to see this happen and we can start to build systems with performance characteristics that weren’t conceivable a half a decade ago.

The article mentions 3D XPoint and Intel Apache Pass is the codename for 3D XPoint in DIMM format. It could be NVDIMM it could be something else. We don’t know yet. This article argues that storage systems need to change and I fully agree. If you consider the current performance overhead on recently released PCIe NVMe 3D XPoint devices, it is clear that the system and the software have the largest impact on latency. The solved the device characteristics pretty much; it’s now the PCIe bus and the software stack that delays the I/O. Moving to the memory bus makes sense. Less overhead and almost five times the bandwidth. For example, four-lane PCIe 3.0 provides a theoretical bandwidth of close to 4 GB/s while 2400 MHz memory has a peak transfer rate of close to 19 GB/s.

This sounds great and very promising, but I do wonder how will it impact memory operations. The key is to deliver an additional level of memory hierarchy, increasing capacity while abstracting the behavior of the new media.

It’s key to understand that memory is accessed after an L3 miss. It can spend a lot of time waiting on DRAM. A number often heard is that it can spend 19 out of every 20 instruction slots waiting on data from memory. This figure seems accurate as the latency of an instruction inside a CPU register is one ns while memory latency is close to 15 ns. Each core requires memory bandwidth, and this impacts the average memory bandwidth per core. Introducing a media that is magnitudes slower than DRAM can negatively affect the overall system performance. More cycles are wasted on waiting on memory media.

Please remember that not every workload is storage I/O bound. Great system design is not only about making I/O faster; it’s about removing bottlenecks in a balanced matter. It’s essential that the storage I/O should not interrupt DRAM traffic.

An analogy would be a car that can go 65MPH. The car in front of him drives 55 MPH. By selecting another lane, the slower car does not interfere anymore, and he can drive the speed he wants. The problem is in this lane cars typically drive 200 MPHs.

The key point for both NVDIMM as Intel Apache Pass is that adding storage on the memory bus to improve I/O latency should not interfere with DRAM operations.

This content is an excerpt of the upcoming vSphere 6.5 Host Resources Deep Dive book.

Virtually Speaking Podcast: VMware Cloud on AWS & HostDeepDive

Last Friday I had the honor to join Pete Fletcha a.k.a. Pedro Arrow and John Nicholson on their always fantastic podcast Virtually Speaking. Unfortunately, John was ill that morning, but Duncan helped us out by taking a break from his vacation.

We spoke about the upcoming service VMware Cloud on AWS (#VMWonAWS). Why it bring such a tremendous value for customers who are in the process of building a hybrid cloud, and how it can help organizations who are already a customer of both VMware and AWS. Closing off we touched upon the progress of the upcoming book ‘vSphere 6.5 Host Resources Deep Dive‘.

I had a blast being a guest again, enjoy the show!

Impact of CPU Hot Add on NUMA scheduling

On a regular basis, I receive the question if CPU Hot-add impacts CPU performance of the VM. It depends on the vCPU configuration of the VM. CPU Hot-Add is not compatible with vNUMA, if hot-add is enabled the virtual NUMA topology is not exposed to the guest OS and this may impact application performance.

Please note that vNUMA topology is only exposed when the vCPU count of the VM exceeds the core count, thus if the ESXi host contains two CPU packages with 10 cores, the vNUMA topology is presented to the VM if the vCPU count equals 11 or more.

vNUMA in a Nutshell
The benefit of a wide-VM is that the guest OS is informed about the physical grouping of the vCPUs. In the example of a 12 vCPU VM on a dual-10 core system, the NUMA scheduler creates 2 virtual proximity domains (VPD) better know as NUMA-clients and distributes the 12 vCPUs equally across them. As a result, a load-balancing group is created containing 6 vCPUs that are scheduled on a physical CPU package. A load-balancing group is internally referred to as a physical proximity domain (PPD). Please note that the PPD does not determine the scheduling of vCPU on a specific HT or full core, a PPD can be seen as a vCPU to CPU affinity group

From a memory perspective, the guest OS is presented with a vNUMA node sized, separated address space. These address spaces are local to the subset of the vCPUs. As a result, a 12 vCPU 32 GB VM gets to detect a system with two NUMA nodes. Each NUMA node contains 6 CPUs and has a local address space of 16 GB. Contrary to popular belief vNUMA does not expose the full CPU and memory architecture, a better way to describe it that vNUMA shows a tailor-made world to the VM.

vNUMA to Physical mapping-1

But what happens when the VM is configured with less vCPUs than the core count of the physical CPU package and CPU Hot-Add is enabled? Will there be performance impact? And the answer is no. The VPD configured for the VM fits inside a NUMA node, and thus the CPU scheduler and the NUMA scheduler optimizes memory operations. It’s all about memory locality. Let’s make use of some application workload test to determine the behavior of the VMkernel CPU scheduling.

For this test, I’ve installed DVD Store 3.0 and ran some test loads on the MS-SQL server. To determine the baseline, I’ve logged in the ESXi host via an SSH session and executed the command: sched-stats -t numa-pnode. This command shows the CPU and memory configuration of each NUMA node in the system. This screenshot shows that the system is only running the ESXi operating system. Hardly any memory is consumed. TotalMem indicates the total amount of physical memory in the NUMA node in kb. FreeMem indicates the amount of free physical memory in the NUMA node in kb.


An 8 vCPU 32 GB VM is created with CPU hot add disabled. NUMA scheduler has selected NUMA node 1 for initial placement and the system consumes ~13759 MB (67108864-53019184=14089680/1024).


The command memstats -r vm-stats -s name:memSize:allocTgt:mapped:consumed:touched -u mb allows us to verify the VM memory consumption of the VM.

03-VM memstats

The numbers are a close match, please note that VM-stats does not include overhead memory and that the VMkernel can consume some additional overhead in the same NUMA node for other processes.

When hot-add is enabled (power down VM is necessary to enable this feature), nothing really changes. The memory for this VM is still allocated from a single NUMA node.


To get a better understanding of the CPU scheduling constructs at play here, the following command provides detailed insight of all the NUMA related settings of the VM. (Command courtesy of Valentin Bondzio)

vmdumper -l | cut -d \/ -f 2-5 | while read path; do egrep -oi "DICT.*(displayname.*|numa.*|cores.*|vcpu.*|memsize.*|affinity.*)= .*|numa:.*|numaHost:.*" "/$path/vmware.log"; echo -e; done


It shows hot-add is enabled and the VM is configured with a single VPD that is scheduled on a single PPD. In normal language, the vCPUs of the VM are contained with a single physical NUMA node. It’s the responsibility of the NUMA scheduler that physical local memory is consumed. To verify if the VM is consuming local memory, Esxtop can be used (memory, f, NUMA stats). However sched-stats -t numa-clients provides me also a lot of insight


As a result, you can conclude that enabling hot-add on a NUMA system does not lead to performance degradation as long as the vCPU count does not exceed the core count of the CPU package. That means that hot-add can be enabled on VMs, but the instruction must be clear that adding vCPUs can happen up and to the threshold of the physical core count. After that point, the VM becomes a wide-VM and vNUMA comes into play. And in the case of CPU hot-add, its sidelined.

What’s the impact of disregarding the physical NUMA topology? The key lies within the message that’s entered in the VMware.log of the VM after boot.

07-Forcing UMA

The VMkernel is forced into using UMA, Unified Memory Access on a NUMA architecture. As a result, memory is interleaved between the two physical NUMA nodes. In essence, it’s load-balancing memory across two nodes, while ignoring the vCPU location. Let’s explore this behavior a bit more.
Christmas is coming early for this VM and it gets another 4 vCPUs. Hot-add is disabled again and thus vNUMA is full in play. The Vmdumper command reveals the following:


The vCPUs are split up in two virtual nodes (VPD0 & VPD1), each containing 6 vCPUs. After running the DVD Store query the following memory allocation happened:

09-Non-Uniform Memory Allocation

The guest OS (Windows 2012 R2) consumed some memory from node 1, SQL consumed all of its memory from node 0. For people intimate with SQL resource management this might be strange behavior and this is true. To display memory management at the VMkernel layer I had to restrict SQL to only run on a subset of CPUs. I’ve allowed SQL to run on the first 4 vCPUs. All these were mapped to CPUs located in NUMA node 0. The NUMA scheduler ensured these CPUs consumed local memory.

After powering down and enabling Hot-add the same test was run again. No NUMA architecture is exposed to the guest OS and therefore a single memory address space is used by Windows. The memory scheduler follows the rules of UMA and interleaves memory between the two physical nodes. And as the output shows, memory is consumed from both NUMA nodes in a very balanced manner. The problem is, the executing vCPUs are all located in NUMA node 0, therefore they have to fetch a lot of memory from remote, creating an inconsistent – less – performing application.


Hot-add great feature for when you stay within the confines of the CPU package but expect performance degradation, or at least inconsistent performance when going beyond the CPU core count.

This content will appear in the upcoming vSphere 6.5 Host Resources Deep Dive book I’m writing with Niels Hagoort (expected May time-frame). For updates about the book, please follow us on twitter @hostdeepdive or like our page on Facebook

Older posts Newer posts

© 2017

Theme by Anders NorenUp ↑